"[W]e recommend this book for an undergraduate course on computational geometry. In fact, we hope to use this book ourselves when we teach such a class."--Brittany Terese Fasy and David L. Millman, SigAct News
"Discrete and Computational Geometry meets an urgent need for an undergraduate text bridging the theoretical sides and the applied sides of the field. It is an excellent choice as a textbook for an undergraduate course in discrete and computational geometry! The presented material should be accessible for most mathematics or computer science majors in their second or third year in college. The book also is a valuable resource for graduate students and researchers."--Egon Schulte, Zentralblatt MATH
"This book is ideal for people who want to learn about the topic without wading too deeply into technical details. I really like the figures, and the writing style is very nice for students, with frequent jumps into exercises. The book favors topics that are intuitive, engaging, and easily grasped. It could form the basis of an excellent undergraduate-level course for students in computer science, applied mathematics, and pure mathematics."--Samir Khuller, University of Maryland
"I thoroughly enjoyed reading this book. It covers an incredibly diverse set of topics, ranging from elementary objects to deep mathematical concepts and important computational problems. Devadoss and O'Rourke have done a remarkable job of showing off the rich interplay between pure mathematics and computing that drives our research community. There really is nothing else like this on the market."--Jeff Erickson, University of Illinois, Urbana-Champaign