Libros > On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173) (Ebook)
Portada de On the Cohomology of Certain Non-compact Shimura Varieties (am-173) (ebook)

On the Cohomology of Certain Non-compact Shimura Varieties (am-173) (ebook)

Autor:Sophie Morel;
Categoría:
ISBN: EB9781400835393
Princeton University Press nos ofrece On the Cohomology of Certain Non-compact Shimura Varieties (am-173) (ebook) en inglés, disponible en nuestra tienda desde el 04 de Enero del 2010.
Leer argumento »
Ver todas las novedades de libros »

Argumento de On the Cohomology of Certain Non-compact Shimura Varieties (am-173) (ebook)

This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology.

Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.0Preface vii
Chapter 1: The fixed point formula 1
Chapter 2: The groups 31
Chapter 3: Discrete series 47
Chapter 4: Orbital integrals at p 63
Chapter 5: The geometric side of the stable trace formula 79
Chapter 6: Stabilization of the fixed point formula 85
Chapter 7: Applications 99
Chapter 8: The twisted trace formula 119
Chapter 9: The twisted fundamental lemma 157
Appendix: Comparison of two versions of twisted transfer factors 189
Bibliography 207
Index 215

Ultimacomic es una marca registrada por Ultimagame S.L - Ultimacomic.com y Ultimagame.com pertenecen a la empresa Ultimagame S.L - Datos Fiscales: B92641216 - Datos de Inscripción Registral: Inscrita en el Registro Mercantíl de Málaga, TOMO: 3815. LIBRO: 2726. FOLIO: 180. HOJA: MA-77524.
2003 - 2019, COPYRIGHT ULTIMAGAME S.L. - Leer esta página significa estar deacuerdo con la Política de privacidad y de uso