Libros > Global Surgery Formula for the Casson-Walker Invariant. (AM-140) (Ebook)
Portada de Global Surgery Formula for the Casson-walker Invariant. (am-140) (ebook)

Global Surgery Formula for the Casson-walker Invariant. (am-140) (ebook)

Autor:Christine Lescop;
Categoría:
ISBN: EB9781400865154
Princeton University Press nos ofrece Global Surgery Formula for the Casson-walker Invariant. (am-140) (ebook) en inglés, disponible en nuestra tienda desde el 08 de Septiembre del 2014.
Leer argumento »
Ver todas las novedades de libros »

Argumento de Global Surgery Formula for the Casson-walker Invariant. (am-140) (ebook)

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases.

As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant.0Ch. 1 Introduction and statements of the results 5 Ch. 2 The Alexander series of a link in a rational homology sphere and some of its properties 21 Ch. 3 Invariance of the surgery formula under a twist homeomorphism 35 Ch. 4 The formula for surgeries starting from rational homology spheres 60 Ch. 5 The invariant [lambda] for 3-manifolds with nonzero rank 81 Ch. 6 Applications and variants of the surgery formula 95 Appendix: More about the Alexander series 117 Bibliography 147 Index 149

Ultimacomic es una marca registrada por Ultimagame S.L - Ultimacomic.com y Ultimagame.com pertenecen a la empresa Ultimagame S.L - Datos Fiscales: B92641216 - Datos de Inscripción Registral: Inscrita en el Registro Mercantíl de Málaga, TOMO: 3815. LIBRO: 2726. FOLIO: 180. HOJA: MA-77524.
2003 - 2019, COPYRIGHT ULTIMAGAME S.L. - Leer esta página significa estar deacuerdo con la Política de privacidad y de uso